
Transmission electron microscope image of SARS-CoV-2, the virus that causes Covid-19.
Source: BSIP/Universal Images Group/Getty Images
Source: BSIP/Universal Images Group/Getty Images
Sign up here for our daily coronavirus newsletter on what you need to know, and subscribe to our Covid-19 podcast for the latest news and analysis.
When Bette Korber, a biologist at Los Alamos National Laboratory, spotted the first significant mutation in the Covid-19 virus last spring, some scientists were skeptical. They didn’t believe it would make the virus more contagious and said its rapid rise might just be coincidence.
Now, 11 months later, the D614G mutation she helped discover is ubiquitous worldwide, featured in the genomes of fast-spreading variants from the U.K., South Africa and Brazil. Meanwhile, new mutations are popping up in increasingly complicated patterns, spurring a drive by top biologists to devise new ways to track a fire hose of incoming genomic data.
The goal: Quickly detect variants that can lessen the effectiveness of vaccines for a pathogen that’s unlikely to be eradicated any time soon. The SARS-CoV-2 virus could settle down and become a mere nuisance like the common cold. Or much like influenza, it could retain its ability to cause severe disease in some segments of the population, a scenario that could require regular booster shots.

Source: Los Alamos National Lab
“By watching it carefully, we can stay ahead of the virus and that is what everyone is scrambling to do right now,” said Korber, who is working to create new mathematical tools for spotting medically significant variants.
The flood of new genome data is so great that the Los Alamos lab had to upgrade its servers to deal with the incoming data. Meanwhile, Korber is on four Zoom calls a week with experts worldwide to devise criteria for deciding when mutations are concerning enough to merit detailed laboratory follow-up on how they may impact vaccines.
A key mystery plumbed early-on by top scientists has been what type of virus the coronavirus will prove to be. So far, it looks more similar to influenza, which shape-shifts all the time and requires annual revaccination, than it does measles, a virus so intolerant of mutation that one vaccine regimen lasts a lifetime.
“Does it mean we need to make a new vaccine every year?” said Paul Duprex, who heads the University of Pittsburgh’s Center for Vaccine Research. ”We don’t know.”
For one thing, mRNA vaccines for Covid-19 have efficacy rates above 90%, much higher than the 60% rate for flu shots in a good year. But vaccine makers Moderna Inc. and Pfizer Inc., along with its partner BioNTech SE, aren’t taking any chances. Just in case, they’re already starting trials of booster shots aimed at B.1.351, the antibody-evading strain first spotted in South Africa.
When viruses replicate and copy their genomes, errors can erupt the long string of RNA or DNA “letters” that determine how viral proteins are developed. Many of the errors have no effect, or they can even make the virus less fit. But a tiny percentage of these changes can give the virus an advantage, making it more infectious or giving it the ability to evade the immune system.
The HIV virus is notorious for its rapid mutation rate. In comparison, SARS-CoV-2 mutates at a much slower rate, partly due to a proof-reading enzyme that limits changes. But with more than 125 million infections worldwide, some errors are bound to slip through.
At the same time, the virus has found devious ways that may avoid its proof-reading mechanism, University of Pittsburgh…
Read More: Covid-19 Coronavirus Mutants Multiply as Scientists Race to Decode Variations